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Earlier models for the self-organization of orientation preference and orientation selectivity maps are
explicitly designed to reproduce the functional structures observed in cortical tissue. They mostly use
formal though biologically motivated implementations and artifical assumptions to achieve this result.
In particular, orientation selective cells are usually encoded by doubling the orientation preference an-
gle, which introduces an ad hoc 180° symmetry to the models. This symmetry is then reflected by the
emerging +180° vortices, which parallel physiological findings. In this work a linear feed-forward neural
network model is presented that is not designed to reproduce orientation maps but instead is designed to
parallel the anatomical architecture of the early visual pathway. The network is trained using a general
Hebb-type unsupervised learning rule and uncorrelated white noise as input. Arguments will be given
that on average even strong intracortical interactions have only a weak influence on the learning dynam-
ics of the afferent weights. An approximate description of the learning dynamics of these weights is then
developed which strongly reduces computational expense without predetermining the receptive field
properties, as earlier approaches do. For parameter regimes, where the most stable receptive fields form
within the given model network, vortex structures containing singularities and fractures are observed.
In addition, for strong lateral interactions, regions of reduced orientation selectivity appear, which coin-
cide with these singularities. Thus, the present model suggests an implicit and biologically plausible cou-
pling mechanism for the coordinated development of orientation preference and orientation selectivity
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maps.

PACS number(s): 87.10.+¢

I. INTRODUCTION

The representation of visual data in mammal area 17 is
to a large extent performed by feature detecting neurons,
the activities of which encode the presence of oriented
contrast lines within their receptive fields [1-3]. The re-
ceptive fields of simple orientation selective neurons are
subdivided into elongated, roughly stripe shaped regions,
where either on or off response of the cell to small light
stimuli is observed. These regions will henceforth be re-
ferred to as “lobes” [see Fig. 2(a) for a bilobed receptive
field, which consists of one on and one off lobe]. Simple
cell receptive fields in monkeys and cats exhibit at most
two or three lobes [4,5] and can be found even in visually
inexperienced animals [6]. For each cell, the stimulus
orientation, which leads to maximum neural response,
defines the orientation preference angle or orientation
preference @. Since ¢ and @+ represent identical
stimulus orientations, the orientation preference is re-
stricted to the interval [0,7[ and may be imagined as a
bar or a nonpointed arrow. The amount, by which each
cell prefers the optimally oriented stimulus with respect
to other stimuli, is called its orientation selectivity.

Single-cell recordings along vertical penetrations
through area 17 revealed only weak or no change of the
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preferred orientation, but changes in complexity of the
receptive field properties were observed. Horizontal
penetrations of the primary visual cortex showed that the
preferred orientations of cortical neurons vary continu-
ously as one proceeds through the cortical tissue [2].
This continuous variation is frequently interrupted by
orientation jumps or reversals of the orientation change.
Hence in the primary visual cortex the neurons are ar-
ranged in orientation columns, where adjacent columns
respond to similar orientations. This ordered arrange-
ment of orientation preferences can also be found prior to
visual experience [6)].

Further studies of cortical topological orientation
maps, which investigate their two-dimensional structure,
were carried out using the 2-deoxiglucose method [7].
These investigations showed complex and patchy but in
general stripelike iso-orientation domains. Unfortunate-
ly, this method does not allow us to separate regions of
poor orientation selectivity from those with high orienta-
tion selectivity parallel to the previously applied stimulus.
This separation can be done by the more recently
developed in vivo differential imaging technique using
voltage-sensitive dyes [8—10]. With this method it could
be shown that in adult monkeys the preferred stimulus
orientations are arranged in &4 vortices, where the orien-
tation preference changes by +180° for each counter-
clockwise surrounding of the vortex center. While these
centers contain singularities of the orientation drift rates,
the borders between adjacent vortices are often accom-
panied by one-dimensional discontinuities of orientation
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preference. Both types of singularities coincide with re-
gions of reduced orientation selectivity as well as with
cytocrome-oxidase rich zones [10—13]. Similar pinwheel-
like orientation preference maps, though without varia-
tions in orientation selectivity as reported for the mon-
key, were also found in area 18 of the cat [14].

Several models have been suggested for the structure
[15-20] as well as for the self-organization of orientation
preference and orientation selectivity maps in mammal
area 17 [21-26]. Some of these approaches suggest orien-
tation preference distributions to consist of a system of
+1 vortices [15,16], which could be shown to agree with
the 2-deoxiglucose experiments [7] as well as quantitative
evaluations of orientation drift rates [17]. Wolf et al.
[19] showed that some structural analogy can be found
between orientation preference maps and electric force
vectors between conveniently positioned electric charges.
Other authors use formal orientation preference vectors
with doubled polar angles [18,20] in order to account for
the 180° symmetry of orientation preference. Thereby,
they introduce the 180° symmetry of the experimentally
observed t1 vortices into their systems.

The developmental models can be divided into several
categories. Von der Malsburg and Cowan [22] showed
that structured orientation preference maps can form in a
system with predefined wave patterns of cortical activity
and genetically predetermined subsets of orientation
selective neurons. However, since the structures of the
cortical activity patterns, which are applied to the net-
work as input, determine the appearance of the emerging
orientation map, the value of this model for the predic-
tion of orientation preference structures is restricted.

Swindale [23,24] presented a general model for the for-
mation of ordered structures within a two-dimensional
array of two-dimensional vectors. Neither these vectors
nor the dynamic equation of his system can be directly
related to orientation selectivity and its time evolution in
biological tissue. Therefore, as stressed by the author
himself, this model makes no effort to suggest possible
neural implementations of the introduced algorithm.
Obermayer, Blasdel, and Schulten [25] present a sophisti-
cated analysis of a Kohonen network, where the forma-
tion of columnar structures is achieved by training a cor-
tical representation of a five-dimensional feature space
describing orientation selectivity, ocular dominance, and
retinotopic position. In this model, neither the learning
rule nor the weight vector are designed to model biologi-
cal synaptic plasticity. Instead, the Kohonen learning
rule is applied to adjust formal weight vectors according
to (in general correlated) input. Both groups adjust the
properties of their models in order to obtain columnar
structures that show optimal agreement to experimental
findings.

Linsker [26] presented a linear feed-forward neural net-
work with biologically motivated architecture, where the
input neurons do not represent formal features but model
biological neurons of the visual pathway. The author
showed that Hebb training of initially random synaptic
weights with uncorrelated white noise can lead to orien-
tation maps with +1 vortices as elementary structures.

For the simulation of these maps, however, he applied an
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approximate description that considered ad hoc three-
lobed cortical receptive fields (with 180° symmetry) only
and restricted the intracortical connections to weak la-
teral interaction.

All of these approaches make no effort to predict the
vorticity of singularities and, therefore, the structure of
orientation maps; rather, they artificially introduce the
experimentally observed 180° symmetry either by dou-
bling the orientation preference angle or through
predefined receptive fields with even spatial symmetry.
This ad hoc symmetry then determines the vorticities ap-
pearing in the orientation maps. Further, most of the ap-
proaches use formal quantities to describe properties of
receptive fields and therefore fail to model the formation
process of the cortical receptive field profiles themselves.
In summary, the fact that collective adjustment of orien-
tation preferences can only occur via the coupling of re-
ceptive field profiles (which in general show 360° symme-
try), but not via the coupling of 180°-symmetric orienta-
tion preference angles themselves, is not taken into ac-
count so far.

The main purpose of the present work is not to model
the formation of orientation maps using a system that is
explicitly designed to perform this task. Instead, a neural
network model is presented that explicitly incorporates
into its architecture neuroanatomical data about the con-
nectivity found in the early visual pathway. The matura-
tion behavior of this model network under a general
Hebb-type unsupervised learning rule [27] is then ana-
lyzed. The network consists of an array of linear percep-
trons as introduced by Stetter, Lang, and Miiller [27],
which are shifted against each other and which interact
via time independent lateral synaptic connections be-
tween their output neurons. Because prenatal develop-
mental processes are modeled, the training is driven by
uncorrelated white noise as input patterns. During the
learning process, the profiles of the cortical receptive
fields are changed by plasticity of the synaptic weights
from the input layer to the output neurons. Therefore,
the cortical receptive field profiles as well as the distribu-
tions of orientation preference and orientation selectivity,
which are derived from their structure as observables, are
allowed to undergo free development. This development
is determined only by the receptive field properties of the
input neurons (the model retinal ganglion cells) and the
lateral interaction function.

For this network architecture, arguments will be given
that on time average the lateral interaction, though dom-
inant in synaptic strength [27,28], has only a weak
influence on the learning dynamics of the afferent weights
and can be treated as a perturbation. A method for the
approximate description of the learning dynamics is then
developed, which is similar to first-order perturbation
theory. It allows for a strong reduction of computational
expense without predetermining the receptive field struc-
ture, as Linsker’s [26] approach does. Numerical simula-
tions will give evidence that this approximation can even
be used in case of a dominant influence of lateral cortical
interactions on the learning dynamics. Finally, from
zeroth-order approximations of degenerate receptive field
states, an energy function is deduced. It provides a simple
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gradient descent description for the learning dynamics,
and its minima of which correspond to stable orientation
preference maps.

The emerging orientation maps are characterized for
purely excitatory, sombrero, purely inhibitory, and in-
verse sombrero-type lateral interaction functions. It
turns out that vortex structures with singularities in the
vortex centers and fractures can form in our anatomically
motivated network architecture. In addition, for medium
strong interaction strengths, patches of reduced orienta-
tion selectivity are found. Due to a coupling mechanism,
which is inherent to the model, these patches coincide
with the discontinuities of the corresponding orientation
preference map. However, this is only the case for bi-
lobed receptive fields, which were found previously to be
the most stable type of cortical profiles [27]. Due to the
360° symmetry of these profiles, only 1 vortices are ob-
served in the present model. This result is not in accord
with more recent experimental findings [8-10] and
demonstrates that ] vortices are not an inherent
characteristic of Hebb-trained linear feed-forward model
networks with an anatomically motivated architecture.
In summary, there is yet no model network known in the
literature that succeeds in predicting 1 vortices within
orientation preference maps as a result of cortical recep-
tive field properties, which themselves develop during
training under a given learning algorithm.

The paper is organized as follows. In Sec. II the net-
work architecture, the learning rule, and the training
conditions are specified. Further, an approximate
description of the learning dynamics and the energy func-
tion for weak lateral interaction are deduced. Section III
presents the training results obtained with the present
model. Finally, Secs. IV and V contain a discussion of
the results and a summary.

II. NETWORK STRUCTURE
AND ANALYTIC METHODS

A. Network architecture, dynamics, and learning rule

In this work, a linear neural network with feed-forward
connections is considered. Input as well as output neu-
rons are arranged in two-dimensional layers. The input
layer can be taken to model a part of the mammal retina
or lateral geniculate nucleus (LGN), while the output lay-
er corresponds to a part of layer IVc of the mammal pri-
mary visual cortex (area 17). The input neurons have ma-
ture sombrero-type receptive fields represented by a
difference of Gaussians with radii R,. and R, respec-
tively. These receptive fields act as filter functions on the
input patterns and are henceforth referred to as input
filters. Since random spatial variabilities of the properties
of the input neurons are not considered explicitly in this
paper, it is convenient to describe the input layer using
the continuum limit, where the function v(r,?) denotes
the neural activity at position r at time ¢. The activity
function v(r,?) for the input neurons is obtained by con-
volving the input pattern presented at time ¢z — 7 with the
input filter function. Each output neuron m receives
feed-forward connections w,,(r—r,,) from position r of
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the input layer, where w,, (r) is nonvanishing only for re-
tinotopic distances r less than the projection radius p
(Fig. 1). This leads to a network that consists of a large
number of linear perceptrons as described by Stetter,
Lang, and Miiller [27], each shifted against its neighbors
by multiples of the grid constant of the output layer. In
this configuration, the receptive fields of the output neu-
rons strongly overlap (Fig. 1).

The neurons of the output layer interact through in-
tracortical synapses. This connectivity represents a
lateral interaction between the output units, and the in-
teraction strength between neurons m and n is denoted as
1, =I'(r,,,) with the intracortical connection function
I'(r). The network is trained using a white noise function
&(r, 1), which models prenatal spontaneous photoreceptor
activity patterns. The input function is assumed to obey

(E(r,t)E(r',t+1y)), =g(ty)8(r—1') , (1)

where ( ), denotes the time average over intervals short
compared to the time constant of the learning dynamics,
and g(z) is the time correlation function of the spatially
uncorrelated photoreceptor activities. In contrast to the
feed-forward connections, the lateral interaction is not
trained but is introduced as a system parameter and kept
fixed during the maturation process. In this paper, the
influence of a finite lateral interaction on the profiles of
the emerging cortical receptive fields is analyzed. The
orientation preference angle as well as a measure of the
orientation selectivity are determined for each output
neuron by evaluating the quadrupole moment of the
Fourier-transformed cortical profile. This procedure,
which corresponds to the experimental determination of
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FIG. 1. Schematic plot of the neural network architecture
used in this work. Uncorrelated white noise patterns £(r,) are
convolved with the sombrero-type input filters and lead to ac-
tivity distributions v(r,?) of the input layer. The activities of the
output neurons m are obtained by summation over these input
activities weighted by the synaptic fields w,,(r—r,). The
synaptic fields of different output neurons are shifted against
each other to preserve strict retinotopic order. The output neu-
rons m and n are connected via time independent lateral con-
nections I,,,.
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orientation selectivity from the response to moving sine
wave gratings, is described in more detail elsewhere [27].
The orientation preferences and the orientation selectivi-
ties of all output neurons then represent the orientation
preference and orientation selectivity map for the con-
sidered network.

The activity s,, of output neuron m at time ¢ is given
by

sm(t+7)= [w,(r—r, 0(r,0)dr+ 3 I'(r,,,)5,(1) . ()

The constant T approximately corresponds to the time be-
tween a visual stimulus and the maximum response of the
stimulated cortical neuron and is considered as an ele-
mentary time step of the network dynamics. It can be es-
timated to about 50 ms from evaluations of reverse corre-
lations in cats [5]. The iterative equation (2) can be
transformed into the expansion

S,(t+71)= fwm(r—r,,, Jo(r,t)dr

+EI’(r,,,,,)fw,,(r—r,, J(r,t —7)dr

+o 3)

where the signals of the last term, which propagate from
the input neurons over one cortical interneuron to the
cortical target neuron, are delayed by 7 with respect to
the direct afferent signals.

The training is guided by a general Hebb-type learning
rule, which is defined as

Sw,,(r—r,,,t+7)=s, (t +7)v(r,1)
—F(v,w,w,,(r—r,,) . 4)

Insertion of (3) into (4) and time averaging as defined
above leads to

Aw,, (1= [ G(r—1w, (r')dr' — f(||w,, | w,, (r)

+31(r,,) [ Gr—rw,(r' —1,,)dr', (5

where 1, =1, —1,,, G(r)={v(0,t)v(r,t)), is the spatial
correlation function of the input cell activities and
fUlw,|D=(F(v,w,)), is a general decay function,
which is assumed to depend on the norm ||w,,| of the
synaptic weight function only. The last term in (5) de-
scribes the contribution of the intercortical connections
to the learning process. It depends on a formal lateral in-
teraction function

I(r):=I'(r)g(7) . (6)

Since 7 represents the time constant of the neural dynam-
ics, it should be similar to the correlation time of the
spontaneous photoreceptor activities. Therefore, the
time correlation function g(¢) will vanish for time inter-
vals much longer than 7, i.e., g(7) <<g(0)=1 and g(¢)=0
for t 227. With these assumptions, all higher terms of
the lateral interaction in (3), which correspond to delays
t 227, may be neglected in Eq. (5). In addition, the
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lateral interaction function I(r) is small compared to the
biologically motivated intracortical connection function
I'(r) and can therefore be treated as a small perturbation
of the time averaged learning dynamics. Its strength is
measured by I2= f I*(r)dr. The spatial correlation func-
tion of the input neurons G can be calculated as for the
deterministic model in Stetter, Lang, and Miiller [27].
The result for G is a combination of three Gaussians with
radii V2R,,, V2R,,, and R, =(R2 +R2)'%

To investigate the maturation behavior of the network,
it is convenient to express the learning dynamics in terms
of the eigenstates of the input correlation function G [26].
For this step, translational invariance of the correlation
function is assumed. To perform the transformation to
the eigenrepresentation of G, the synaptic fields are ex-
panded with respect to the eigenstates cg of the correla-
tion function

w,(r)=3a, gg(r),
B
with fdr'G(r-—r’)cﬁ(r')——‘lﬁcB(r). (7)

Each quantum number B incorporates the radial and an-
gular node indices (n,/) of the eigenlevel [29] and a num-
ber k, which discriminates between degenerate eigen-
states. Note that in general the learning rule does not
lead to normalized synaptic fields, i.e., zﬁaﬁ,,ﬁil. Re-
placing the weight functions w,, (r) in (5) by (7), multiply-
ing by c,(r), and integrating over r yields

d(a,, ,)/dt=[A,—f(||la,])]a. q

+2 EQaB(rmn )an,B > (8)

n B
QaB(l')ZI(I)CaB(I') , 9)
Copltpy, )= fdrdr’ca(r)G(r—r’)cﬁ(r’—rm") , (10)

where a,, is the vector with components a,, ,. Cg(1,,,)
is proportional to the correlation of the activities shown
by the cortical (output) neutrons m and n if their afferent
synaptic fields are described by the eigenstates c, and cg,
respectively. It will be referred to as a partial cortical
correlation function. In (8), the learning dynamics is
determined by the time dependent behavior of the expan-
sion coefficients a,, ,(t). The first term on the right hand
side of (8) dominates at the beginning of the training pro-
cess and leads to a growth of the norm values ||a,,||. At
an intermediate stage, the first term decreases more and
more and the learning process is dominated by the second
term describing the influence of the lateral interaction.
Then the development of cortical receptive field profiles is
determined by the lateral interaction function I(r) and
the matrix of the partial cortical correlations C,4(r),
which together form the lateral coupling matrix Q,g(r).
The coefficient a,, , tends to grow due to the influence of
eigenstate 8 mixed to the receptive field of neuron n if the
matrix element Q 4(r,,) is positive, i.e., if the lateral in-
teraction I(r,,) and the partial cortical correlation
C ,5(r,,,) have the same sign. This may be explained by
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the fact that for positive C,g, neurons m and » tend to
fire more synchronously due to the presence of states a
and B in their receptive fields, respectively. For a positive
lateral interaction, large activities of both neurons will
therefore mutually strengthen each other, leading to a
stabilization of the synaptic structures c, and cg contrib-
uting to these activities.

B. Formal solution for weak lateral interactions

In this section it will be shown that for weak lateral in-
teractions most of the expansion coefficients a,, , can be
neglected. For a vanishing lateral interaction, the stable
fix points of (5) and (8) are eigenstates w,, to the largest
eigenvalue A, of the input cell correlation function (prin-
cipal components):

wm =2am,0KCOK ’ GCOK=AOCOK ’ f(”am “)=}“0 . (11)
K

In this notation, the index a=0 denotes the quantum
numbers (n,]) characterizing the state with the largest ei-
genvalue, and a separate index « discriminates the degen-
erate states of this eigenlevel. A solution of
f(||a,, ||)=Ag, which determines the norm of the resulting
synaptic field, is assumed to exist. Further, a shorthand
operator notation is used, and functions and integral
operators are printed in bold face. Only nondegenerate
(n,0) and twofold degenerate (n,1) principal component
eigenstates exist [27], which can be written as
co(r)=gq(r) for (n,0) domains and c,,(r)=g,(r)cos(¢p),
¢o,2(r)=g,(r)sin(@) for (n,1) domains [29].

Now a finite lateral interaction is considered, which is
assumed to be weak compared to the average strength of
afferents projecting onto cortical neurons, i.e.,
I:=|I||/¢||a,|| > <<1 (see Sec. ILA). To obtain first-
order solutions with respect to the relative strength I, of
the lateral interaction, normalized states
Y,(r):=w,(r)/|a,| and the perturbation function
V,(r):=U,(r)/I,, with

Up()=31(x,,)/ |18l [ drG(r—1")w, (' —1,,,) ,
n
are introduced. Then, the fix points of (8) satisfy
G‘l’m +Irvm =/"'me ’ f(”am“)=.um . (12)

In analogy to perturbation theory, one may write the
first-order solutions and eigenvalues as

Vo™ 28m axCax T LY s Bpm:=AotTp; . (13)

These expressions are inserted into (12) and ordered by
powers of I,. Then, for nonzero interaction strength, the
principal components transform into the following first-
order fix points:

\I’m =Eam,0Kc0K+ 2 am,Bxcﬂx ’ (14)
K B#0,x

am,0K=(c0x'Um )/N,, ,
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B#“o” ,
fUla,[D=A+N,, , (16)

where (-) denotes the scalar product defined by the in-
tegral over the two inserted functions, and
N% =7 (coU,)* assures normalization of the vector
a, o The first-order solutions obtained using this method
are no longer orthogonal. Yet if the separation of the
largest eigenvalue from smaller ones is large compared to
the perturbation, ie., Ag—Ag>>||U,,||Vm,B+“0”, the
solutions for a= “0” given in (14)-(16) remain the only
stable ones. Note that this condition is best fulfilled for
the all excitatory (0,0), the bilobed (0,1), and the circular-
ly symmetric (1,0) receptive field profiles [27].

Equation (15) shows that the expansion coefficients
a,, g for nonprincipal component states B decrease in
size with increasing difference of the corresponding eigen-
values Ag from the principal eigenvalue A,. Therefore,
only the coefficients of the few eigenstates with the larg-
est eigenvalues are important for the description of the
resulting first-order synaptic fields. This fact strongly
reduces time consumption of corresponding computer
simulations.

In nondegenerate (0,0) and (1,0) domains, the receptive
fields are only changed by small admixtures of nonprinci-
pal component states to the rotationally symmetric
zeroth-order principal component. Therefore, only small
orientation selectivity and hardly developed orientation
preference maps can emerge for weak lateral interaction.
In particular, the assumed three-lobed receptive fields
with 180° symmetry, which were used by Linsker [26] to
reproduce the formation of +1 vortices in orientation
preference maps, can be found in the present model only
for sufficiently strong lateral interaction. Hence, in the
weak coupling approximation, the most interesting case
is the formation of orientation preference maps in the
twofold degenerate (0,1) parameter domain. Here the
first-order solution points into the same direction as the
projection of the perturbation function onto the principal
component subspace. For the special case of an excitato-
ry lateral interaction, this means that the receptive field
profile of neuron m forms in a way that maximizes the
correlation of its activity with the average activities of
the surrounding neurons (as pointed out by Linsker [26]
for a similar model).

Finally, it must be mentioned that the perturbation U,,
acting on the receptive field of neuron m depends on the
synaptic fields of all other neurons n. Therefore,
(14)—(16) can only give a formal solution of (8), while ex-
plicit training results must be obtained numerically.

C. Energy function for the (0,1) domain

This section develops an energy function for the learn-
ing dynamics in considering the special case of a very
weak lateral interaction in the (0,1) domain. This ap-
proach neglects variations of orientation selectivity, but
allows a semianalytical and very efficient description of
stable orientation preference maps, which represent local
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energy minima. For the description of the learning dy-
namics, only the two orthogonal functions spanning the
principal component subspace, namely
¢, (r)=go(r)cos(p) and c,(r)=gq(r)sin(¢), are con-
sidered, i.e., all coefficients except a,, o, =:4,8,, , and
@y 02=:4,,8,,, are neglected in Eq. (14). This corre-
sponds to first-order perturbation theory for degenerate
states. In the present notation, the norm 4,,:=||a,,| is
written separately. Because 6,%,,x+63,,y=1 holds, these
coefficients can be written as @, ,=:cos(g,) and
am,y =:sin(g@,, ), respectively, and the first-order solution
(14) becomes w,,(r)=gq(r)cos(¢—@,,). Thus, the angle
@,, is always orthogonal to the preferred orientation,
while 8,:=(@,,,,a,,,) is the normalized orientation
preference vector for the receptive field of neuron m (Fig.
2). Note that the receptive field profile is described by a
pointed vector, which shows 360° symmetry, while the
corresponding orientation preference has 180° symmetry.
The total of all orientation preference angles of the corti-
cal neurons fully determines the structure of an emerging
orientation preference map. Proceeding from these as-
sumptions, an energy function determining the time evo-
lution of the orientation preference angles can be derived.
With the help of the orientation preference vectors, (8)
may be rewritten as

(dA,, /d)a,, + A,,da /dt=[Ag—f(A,)]A,3,,
+3Q(r,,) 4,3, , (17

where Q is the matrix containing the intracortical cou-
pling coefficients (9). Because the orientation preference
vector @, is normalized to unity, d3,, /dt is orthogonal
to a,,, i.e., da,, /dt=t,dgp, /dt with t,:=(—sin(g,,),
cos(@,, )). Therefore, the radial and angular parts of (17)
obtained by forming the scalar product with 4,, and t,,,
respectively, are

dA,, /dt=[Ag—f(A,)]A,+32,Q(r,,3,4,, (18
d@, /dt=S(A4,/A4,)t,Q(x,, )3, . (19)

From the approximate solution of (18),

A, =A4o{1+33,Q(r,, )8, 4,/[A3f (4)]} ,
P

(@ (®)

FIG. 2. (a) Simplified profile of a bilobed orientation selective
(0,1) receptive field. “+” and “—” denote the sign of the
synaptic field w. It is obtained as a linear combination of the
two (0,1) basis states. (b) The orientation preference vector a of
the receptive field in (a). The vector is orthogonal to the pre-
ferred orientation of the cell.
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with the unperturbed amplitude A4, it follows that the
amplitudes differ from the common zeroth-order ampli-
tude only by a term of order O(I) (since the coupling ma-
trix is of order I). Therefore, the ratio of the amplitudes
in (19) is close to unity in the case of a weak lateral in-
teraction. Hence the radial and angular equations be-
come approximately decoupled at an intermediate stage
of the training process. If one neglects the small
influence of the amplitudes in (19), i.e., 4,/4,, =1, the
dynamics of the orientation preference angles is fully
determined by the structure of the lateral coupling matrix
Q. The energy function, for which (19) performs gradient
descent and the minima of which define stable orientation
preference maps, then becomes

’¢N):—% EﬁmQ(rmn)an : (20)

3
m¥*n

E(p, ...

It is worth mentioning that this energy function is similar
to that obtained for the two-dimensional xy model, where
interacting spins located on a two-dimensional grid rotate
constrained to the plane of this lattice [29]. Since the
unit matrix of the xy model is replaced by the coupling
matrix Q, the energy function (20) can be considered to
describe a generalized two-dimensional xy model [30].

D. Evaluation of the coupling matrix

The partial cortical correlations C,g(r), and therefore
the coupling matrix elements Q,4(r), can be evaluated
analytically. For convenience, gabor functions will be
used to represent the eigenstates

¢ (r)=exp(—r2/2P?%)sin(kx ) ,
c,(r)=exp(—r?/2P%)sin(ky) .
Fitting P and k to numerically obtained (0,1) receptive
field profiles corresponding to a projection radius p gives

P=0.5p, k =2/p. The evaluation of (9) using these func-
tions yields

Qup(1)=I(r)[S 5(r, Ry ) — 28 (5(r, Ry
+5,5(0,Rg)1 3
S (r,R)=N exp(—r?/2R})[cos(kox)—b*], (22)
S,,(r,R)=N exp(—r*/2R})[cos(koy)—b%], (23)
S.(r,R)=S,,(r,R)
=—2bN exp(—r’/2R;)
X [sin(kgx /2)sin(kqy /2)] , (24)

where R}=2P>+R?, ko=(2P*/R})k, b=exp[ —k’P*/
2(P2+R§)], and N is a norm factor depending on k, P,
and R.

From these results, the interaction energy E(@,,p,) be-
tween two cortical neurons can be evaluated. Consider
two isolated neurons 1 and 2, where 1 is located at the
origin with its orientation preference vector pointing to
the positive y axis. The energy function (20) then reduces
to E(@,=m/2, @,(r;,)), which only depends on the vec-



S0 NEURAL NETWORK MODEL FOR THE COORDINATED . ..

tor connecting the two output neurons. Minimizing this
energy with respect to the orientation preference angle @,
yields the equilibrium orientation preference of receptive
field 2 as a function of the distance vector to the central
neuron 1. The equilibrium angle @, =g@(r;;)=¢(r) is then
defined by

tan[@(r)]=Q,,(r)/Q,,(r) , 25)
with the additional constraint
Q,,(r)cos[@(r)]+Q,, (r)sin[p(r)]>0 . (26)

The orientation preference vector fields obtained by re-
placing the matrix elements Q,4(r) with (21) are shown
in Fig. 3(a) for all excitatory lateral interactions and in
Fig. 3(b) for sombrero-type lateral interactions. The
structures aobtained simply express the fact that the
lateral coupling maximizes the cortical correlation
(which is roughly the overlap between the two receptive
fields) for positive lateral interaction [Fig. 3(c)] and mini-
mizes it otherwise. Further, these vector fields resemble
the magnetic field of a classical magnetic dipole or the ex-
change field of the xy model. While these latter interac-
tions lead to ferromagnetic equilibrium states, the struc-
ture of the field seen in Fig. 3 can induce more complex
orientation preference patterns.

III. RESULTS

The development of orientation preference maps was
investigated for a neural network model as defined in Sec.
II. The diameter of the output layer was chosen between
20 and 80 units and periodic boundary conditions were
applied. The simulations were carried out using a
discrete layer of input neurons with the same grid con-
stant as the output layer. The network was trained using
Yuille, Kammen, and Cohen’s [31] learning rule, which is
a special case of (5) with f(||w]|)=|w||>. For nearly all
simulations, the projection radius was set to p=6, which
corresponds to about 100 afferent synapses per output
neuron. To obtain zeroth-order solutions in the (0,1)
domain, R,.=p/3 and R, =2R, was used in most
stimulations [27]. The lateral interaction function was
represented either by Gaussian excitatory, sombrero,
Gaussian inhibitory, or inverse sombrero-type profiles.
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The center radius of these functions is denoted by R, and
the surrounding radius for sombrero-type functions is
R,=2R,. The strength of the lateral interaction was ad-
justed using the parameter I, =1(0). For each simula-
tion, the norm I (the total strength) of the lateral interac-
tion function was scaled to the average norm of the re-
sulting afferent synaptic fields. This relative interaction
strength I,:=||I||/{||w,]||), provides a measure of the
strength of intracortical connections with respect to the
afferents enervating any given cortical neuron. The in-
teraction function was cut at 2R, where R is the max-
imum Gaussian radius. Test simulations for larger cutoff
radii did not lead to different results, justifying
R .x=2R.

A. Behavior of the expansion coefficients

As a first step, the relative magnitudes of the expansion
coefficients a,, , were determined. Simulations using the
first 20 eigenstates were carried out and the average
coefficients a,=(a,, ,), were calculated. Figure 4
shows the dependence of these coefficients on the distance
of the corresponding eigenlevel from the principal com-
ponent level. For the simulation, a sombrero-type lateral
interaction with R, =1.5 and an interaction strength cor-
responding to I,=0.84 was used. First-order perturba-
tion theory predicts, according to (15), a reciprocal
behavior, but the coefficients show a stronger than re-
ciprocal decrease that is more nearly exponential. This
behavior can be understood from the structures of the
external perturbation U and the eigenstates c¢,. For all
cases, where continuous orientation maps evolve, the per-
turbation U is a smooth function with only a few zero
crossings. On the other hand, within the parameter re-
gimes considered here, the eigenstates ¢, show an in-
creasing number of radial and angular nodes with in-
creasing difference of their eigenvalues A, from the prin-
cipal eigenvalue A, Therefore, their overlap with the
perturbation function, which appears in the numerator of
(15), will strongly decrease with the difference A,—A,,.
This tendency leads to a stronger than reciprocal de-
crease of the average coefficients in (15) and additionally
justifies the neglect of all but the few highest eigenlevels
for an approximate description of the network behavior.

FIG. 3. Orientation of
minimal energy as a function of
the position for an output neu-
ron, which only interacts with a
central neuron with vertical
orientation preference vector (a)
for purely excitatory Gaussian
lateral interaction and (b) for
sombrero-type lateral interac-
tion. (c) shows some receptive
field profiles drawn for case (a).
It can be seen that the receptive
fields are oriented to obtain max-
imum overlap to the central re-
ceptive field.
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FIG. 4. The averaged expansion coefficients a, to the 20
highest eigenstates of the input correlation function for som-
brero lateral interaction with relative strength I, =0.84. The
dashed line represents reciprocal behavior, the solid line an ex-
ponential dependence. The coefficients show exponential rather
than reciprocal decrease with increasing deviation of the corre-
sponding eigenvalue A, from the principal (largest) eigenvalue
Ao- Due to this strong decrease, only the largest coefficients
need to be considered to obtain a good approximate description
of the network behavior.

B. Structural organization of orientation preference maps

In this section and in Sec. III C, the orientation prefer-
ence distributions that emerge in the model network are
analyzed by systematically changing the parameters of
the lateral interaction function and characterizing the
emerging orientation preference map.

First, the type and range of the lateral interaction func-
tion were varied for the (0,1) domain and for a weak in-
teraction strength I,=0.01. In the simulations, the first
eight eigenstates were used. Typical results are presented
in Fig. 5, where the bars encoding the orientation prefer-
ence of the nodes of the output layer are plotted. The
length of the bars is related to the strength of the orienta-
tion preference, while their orientation is orthogonal to
the preferred orientation of the corresponding output
neuron [27]. In the special case of (0,1) receptive fields,
they are parallel to the orientation preference vector as
defined in Fig. 2. Since they characterize receptive fields
with arbitrary spatial symmetry, the orientation prefer-
ence bars do not express any directionality.
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Within the (0,1) domain, only a few qualitatively
different ordered structures were found. The most prom-
inent ones are the radial and tangential vortices [Figs.
5(a) and 5(b)] and the parallel configuration. Further
structures obtained are disordered vortices with nearly
antiparallel vectors for neighboring cells [Fig. 5(c)] and
the rarely appearing wave structures. Since only orienta-
tion preference is considered, parallel and antiparallel
configurations lead to similar plots in Fig. 5. The param-
eter regimes leading to the corresponding structures are
listed in Table 1.

The orientation preference structures developing from
inhibitory and inverse sombrero-type lateral interactions
can be understood as follows. With very short interac-
tion radii only nearest neighbors can interact. Then,
within any mature orientation map the orientation
preference vectors are antiparallel, which is optimal for
inhibitory lateral interaction [as can be seen by inverting
the arrows in Figs. 3(a) and 3(b)]. Note that in this
configuration, the next nearest neighbors show parallel,
nonoptimal arrangement with respect to each other.
Slightly larger interaction radii lead to a weak interaction
of these next nearest neighbors, which for the antiparallel
structure contribute a small positive term to the total in-
teraction energy. Minimal energy will therefore be ob-
tained with a configuration, where the preferred orienta-
tions of the next nearest neighbors, and therefore of all
neurons, are slightly tilted with respect to each other.
This behavior can be seen in Fig. 5(c). For large interac-
tion radii, in contrast, the positive interaction energy of
the parallel next nearest neighbors is comparable to the
negative next neighbor interaction term. Then, any ap-
proximately antiparallel configuration becomes unstable.
Instead, all vectors avoid mutually parallel arrangements,
which lead to the emergence of irregular structures with
discontinuous behavior of the orientation preference an-
gles. Since in biology the range of the lateral interaction
most probably reaches beyond next neighbors, inhibitory
and inverse sombrero lateral interactions are not suitable
for the description of orientation map formation in the
present model.

Purely excitatory interactions of long range as well as
short range sombrero-type lateral interactions always
lead to the formation of vortices. For both interactions,

TABLE 1. The orientation preference maps obtained in different parameter regimes.

Type of the lateral interaction function

Interaction Inverse
radius Excitatory Sombrero Inhibitory sombrero
Short range Parallel Tangential vortices Irregular Irregular
irregularly vortices vortices
arranged [Fig. 5(0)] [Fig. 5(c)]
[Fig. 5(b)]
Wave structures
Long range Radial vortices Parallel Irregular Irregular

regularly
arranged
[Fig. 5(a)]

radial vortices
[Fig. 5(a)]
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FIG. 5. (a)-(c) The emerging orientation preference maps for
weak lateral interaction strengths I, between 0.015 and 0.025.
(a) Radial vortices (R, =2), (b) tangential vortices (R, =1.5), (c)
disordered vortices (R,=1). (d) Parameters as in (b) but with
stronger and slightly elliptic lateral interaction functions. For
(0,1) profiles, the bars are parallel to the orientation preference
vector of the receptive field as defined in Fig. 2. The parameter
regimes leading to each type of map are given in Table 1.

+1-type vortices are found, where the orientation prefer-
ence angle changes by 1£360° for every counterclockwise
surrounding of a vortex center (for the notation, see also
Baxter and Dow [17]). *1-type vortices cannot be ob-
tained within the (0,1) domain, because this type of vor-
tex requires the invariance of the receptive field profiles
against ¢—@+7 symmetry operations. Only 2n +1-
lobed (i.e., three-lobed) receptive fields obey this condi-
tion and lead to *1 vortices (as shown by Linsker [26]).
But in case of weak lateral interactions, three-lobed re-
ceptive fields do not form in the current network model
under the learning algorithm considered in the simula-
tions.

The organization of the orientation preference maps
can be related to the structure of the interaction field
shown in Figs. 3(a) and 3(b). Related with a short range
excitatory lateral interaction (for example, 70 only for
nearest neighbors) are the minimum energy structures
with a parallel arrangement of adjacent, hence all, vec-
tors. If the interaction radius R, exceeds p/3, i.e.,
R_>p/3, the nonzero area of the interaction field in-
cludes the two singularities of the field on the vertical
axis that result from the zero crossings of the cortical
correlation function C,g(r). In this case, the number of
vectors that are nearly optimally arranged with respect to
each other is maximized if many vectors arrange in a ra-
dial vortex. The radial vortex structure of the field then
translates into radial vortex patterns of all interacting
output neurons of the network. Since the location of the
singularities depends on the cortical correlation, and
therefore on the projection radius p, the radius R, of the
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vortices is expected to scale with p. In fact, R, exhibits a
roughly linear dependence on the projection radius p, but
only a weak dependence on the range R, of the lateral in-
teraction function.

The inherent underlying structure of the interaction
field, in case of a sombrero-type lateral interaction, is a
pair of distorted tangential vortices. They are arranged
around the zero crossing of the lateral interaction func-
tion on the left and right hand side of the center of Fig.
3(b). Therefore, a tangential vortex leaves most of the
concerned orientation preference vectors in a nearly
minimum energy arrangement with respect to each other.
In this case, the distance of the singularities of the field
depends on the interaction radius R,.. Therefore, the vor-
tex radii should scale with R, for sombrero-type lateral
interactions, which was in fact corroborated by the simu-
lations.

These two types of lateral interactions lead to piece-
wise continuous changes of the orientation preference
and also to zero- as well as one-dimensional discontinui-
ties, and in this respect resemble the behavior of orienta-
tion maps found in mammal cortical tissue. Given these
results, small uniform polarities in the Gaussian functions
representing the input filters and polarities of the lateral
interaction function were then introduced. A polar
lateral interaction function leads to a deformation of the
cortical interaction field. For not too small interaction
strengths the vortices become prolonged [Fig. 5(d)].
Small polarities of the input filters induce anisotropic
correlations of the input activities and directly force the
unperturbed receptive fields to a unique fixed orientation
preference angle. Under the influence of a weak lateral
interaction, these polarities dominate and the system de-
velops into a parallel configuration. For slightly stronger
lateral interactions vortices form, but orientation prefer-
ence angles near the angle supported by the input filter
polarities become overrepresented. Note that for cats, lo-
cally uniform orientation biases of the retinal receptive
fields were observed [32]. Hence the results given above
suggest an overrepresentation of the preferred retinal
orientation to occur in area 17.

C. Evaluation of the energy function

The iterative simulations described above yield a quali-
tative characterization of the system behavior, i.e., they
characterize the possible orientation preference struc-
tures that may be found. In this section, the energy per
output neuron is calculated from (20) for isolated well-
defined orientation preference structures, namely, the two
types of vortices and the parallel structure observed in
Sec. IIIB. All structures are defined on a two-
dimensional grid with diameter 2R, [see Fig. 6(a) for a
tangential vortex with R, =5]. This method represents
an efficient way to examine the parameter domains,
which lead to the emergence of vortex structures within
the orientation preference maps. First, the influence of
the absolute value of the projection radius p was investi-
gated. The energy was calculated as a function of lateral
interaction parameters for p=6, 8, and 10, while R_/p
and R, /p were kept fixed. The relative behavior of the
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FIG. 6. (a) A predefined tangential vortex with radius R, =5.
(b) The energy per neuron as defined in (20) for an isolated
tangential vortex ( A), a parallel structure (B), and an isolated ra-
dial vortex (C). The dependence on the range R. of the purely
excitatory lateral interaction function normalized to the projec-
tion radius p is shown. The curves for the parallel structure and
the radial vortex intersect, which defines the boundary of two
parameter domains.

energy per neuron was found to be nearly independent of
the absolute size of the system. Therefore, the result of
the training process is not much affected by the artificial
grid constant of the output layer. Hence the important
parameters are the relative values R./p and R, /p, i.e.,
the radius parameters scale with p.

Figure 6(b) shows the dependence of the energy per
neuron on the range of the excitatory lateral interaction
for the three types of structures and a radius R, =5. It
can be seen that the tangential vortex never has minimal
energy for excitatory interactions. Since one can show
that this structure is not a local energy minimum, it can-
not be the result of iterative simulations. Further, there
exists an intersection between the two lower curves. It
separates two parameter domains where the parallel
structure and the radial vortex, respectively, have
minimal energy of all considered structures. Note that in
general this is not necessarily the absolute minimum of
the energy function. However, the results of the iterative
simulations, which agree very well with the behavior of
the energy curves in Fig. 6(b), suggest a high probability
for the training process to be trapped in the correspond-
ing minimum.

To obtain the optimal radius R, ,, for the vortex
structures, several calculations similar to those shown in
Fig. 6(b) were carried out for different vortex radii. The
parameter domains, where vortices form, were obtained
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by evaluation of the intersections of the curves with
lowest energies. In these domains, the optimum vortex
radius R, ., which minimizes the energy per neuron for
a given lateral interaction, was determined. This radius
is expected to provide an estimate of the vortex radii
found in iterative simulations. The results of this pro-
cedure are plotted in Fig. 7(a) for excitatory lateral in-
teraction and in Fig. 7(b) for sombrero-type lateral in-
teraction. The estimated curve for the optimal vortex ra-
dius is inserted in all domains where vortices form. For
excitatory lateral interactions, radial vortices form with
values R_./p>0.5. Except near the domain boundary,
the optimal vortex radius shows an approximately linear
dependence on the projection radius p, as expected from
the argumentation given in Sec. III B.

If, for sombrero-type structures, the lateral interactions
have a short range, tangential vortices develop, whereas a
large radius of the interaction leads to the formation of
radial vortices. The latter result can be explained by the
observation that according to (9) the inhibitory part of
the interaction is cut off by the finite range of the cortical
correlation function. Therefore, at the limit of large in-
teraction radii, the sombrero system must behave like a
Gaussian excitatory system. For fixed p, the radii of the
tangential vortices are found to show a nearly linear
dependence on R.. This again agrees well with the sug-
gestion made in Sec. III B.

These results were compared to those obtained by the
evaluation of iterative simulations with more than two
eigenstates and I;=0.01. The domain boundaries could
be quantitatively reproduced for systems with sombrero-
type couplings. In addition, explicit measurements of the
vortex radii were performed for iterative simulations and
showed qualitative agreement with the estimated curves.
In contrast, the domain boundaries obtained for excitato-
ry lateral interaction could not be reproduced quantita-
tively, although the qualitative behavior agrees well.
This is due to the fact that even for rather small interac-
tion strengths the radial vortices tend to contain near
(1,0) (circularly symmetrical) profiles in their centers.
Therefore, the neglect of the (1,0) state is a good approxi-
mation only for very small interaction strengths. Never-
theless, the evidence of vortex formation for large radii is
not affected by this fact.

Finally, the calculation of the energy function was re-
peated for predefined structures with periodic boundary
conditions, where +1 and —1 vortices are arranged to

R,/p
radial
vortex
1.6 radial parallel
vortex Rv,opt
11 Rv,opt
0.6

FIG. 7. The parameter domains, where the
energy of isolated structures suggests the for-
mation of radial vortices, tangential vortices,
and parallel structures (a) for excitatory and
(b) for sombrero-type lateral interaction. The
inserted curves mark the estimated optimal
vortex radius R, o, for the vortex domains.

0 02 04 06 08 1 R/p 0 02 04 06 08

(@) (b)

Except near the domain boundaries, the radial
vortex radii approximately scale with p; those
of the tangential vortices scale with R, /p.

R./p
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yield a large continuous area of vortices. The domain
boundaries and the qualitative behavior of the optimal
vortex radius obtained for these systems agree well with
those found for isolated vortices. Only the values for the
optimum vortex radii show better quantitative agreement
with those obtained for the iterative simulations. There-
fore, the qualitative system behavior can be explained
predominantly by the structure of isolated vortices, and
the interaction between different vortices arranged within
the output layer is evidently of minor importance only.

D. Stronger lateral interactions:
Structured orientation selectivity maps

While the results given above concentrate on the orien-
tation preference maps forming for weak lateral interac-
tion, it will now be shown that with increasing strength
of the lateral interaction, patches of reduced orientation
selectivity emerge, which coincide with the singularities
of the simultaneously developing orientation preference
map. First, the strength of the lateral interaction func-
tion was varied for excitatory Gaussian and sombrero
lateral interactions within the (0,1) domain, and the
behavior of the expansion coefficients, averaged over all
neurons of a single network, was analyzed. The depen-
dence of the average expansion coefficients of the eight
highest eigenlevels on the relative strength I, of the
lateral interaction is shown in Fig. 8(a) for excitatory in-
teractions and in Fig. 8(b) for sombrero-type interac-
tions. In both graphs, the coefficients show an approxi-
mately linear dependence on I, for weak interaction
strengths and become saturated for stronger I, where the
condition ||U|| <<Ao—AgVB is no longer fulfilled. For ex-
citatory lateral interactions a qualitative change of the
system behavior is found at I,=0.08. Below this value,
all receptive fields approximately show (0,1) profiles, their
correlation maximized by reorientation of the orientation
preference vectors (structured orientation preference
map). Above this value, phase shifts of the receptive
fields maximize the correlation and result in parallel
orientation preference vectors. This allows us to obtain
I, ,.x==0.08 as a quantitative upper level for the relative
interaction strength of weak lateral interactions. Phase
shifted synaptic fields contain strong admixtures of the
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(1,0) eigenstate and the two degenerate (0,2) eigenstates
with different symmetry axes. Which of the two (0,2)
states is more strongly represented in the synaptic fields
depends on the direction of the orientation preference
vectors, which is constant for the parallel structure. In
the particular simulations in Fig. 8(a), the coefficient a,
dominates a5==0 above the boundary, because the sym-
metry axis of the (0,2) receptive field belonging to a, is
closely aligned to the orientation preference angle of the
parallel orientation map resulting in these simulations.

From Fig. 8(a), one can derive that the radial vortex
structures obtained for excitatory lateral interaction be-
come unstable if the strength of the lateral interaction is
increased above I, =0.08. In contrast, the formation of
tangential vortices induced by sombrero-type lateral in-
teractions is nearly independent of the strength of the in-
tracortical connectivity. For both cases, however, Fig. 8
shows that even for strong lateral interactions, all but the
coefficients of the few highest eigenstates remain small
(see also Fig. 4, where in fact the relative interaction
strength was set to I,=0.84, which is not small com-
pared to unity). As mentioned above, this is due to the
strongly decreasing overlap of the eigenstates with the
external perturbation in (15). Thus the analysis demon-
strates that the present approximation is not really
confined to weak lateral interactions but instead remains
valid also for large lateral interaction functions, and
therefore for even dominant intracortical synaptic cou-
pling strengths, as they are probably present in cortical
tissue [I(r) <<I'(r), see Eq. (6)].

For increasing I,, an increasing part of the receptive
fields in the center of both types of vortices exhibit nearly
circularly symmetrical receptive fields [Figs. 9(a) and
9(b)]. This is due to the fact that near the center the per-
turbation function U(r) shows approximately rotational
symmetry and supports the coefficients of the circularly
symmetric (n,0) states. In other words, at vortex centers
a nearly rotationally symmetric environment is provided
to the developing synaptic fields, which strengthens con-
tributions from eigenstates with circular symmetry and
therefore reduces orientation selectivity of the corre-
sponding output neuron. The nonorientation selective
centers are much more pronounced for radial vortices,
since this configuration enables a continuous transition

FIG. 8. Dependence of the eight largest
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FIG. 9. Coordinated arrangement of orientation preference
and orientation selectivity (a) for purely excitatory lateral in-
teraction (R.=2) and (b) for sombrero-type interaction
(R,=1.5) for systems with stronger lateral interactions
(I,=0.057 and I,=0.75, respectively). One observes reduced
orientation selectivity in the vortex centers and partly at the
boundaries between different vortices. The orientation of the
bars encodes the preference angle, their length the orientation
selectivity for each output neuron.

from bilobed (0,1) to circularly symmetric (1,0) receptive
fields. Note that in contrast to the model of Worgotter
and Niebur [20], where reduction of orientation selectivi-
ty at discontinuities is achieved by explicitly convolving
the orientation preference map with an appropriate ker-
nel, the present model contains an inherent mechanism
for the coordinated arrangement of orientation prefer-
ence and orientation selectivity. It suggests a general
principle for the coupling of discontinuities in orientation
preference maps and dips in orientation selectivity maps,
which is also observed in biology [10].

Finally, the (1,0) and (0,0) domains were investigated.
As mentioned above, no strong orientation selectivity can
result in these domains in the case of very weak lateral in-
teractions. With increasingly stronger, purely excitatory
lateral interactions, (0,0) receptive fields themselves main-
tain their profiles, but with sombrero-type lateral interac-
tions a stripe pattern of alternating sign of the receptive
field profiles is created. In the (1,0) domain, the receptive
fields partially deform to three-lobed profiles [due to ad-
mixture of (0,2) states]. However, instead of expressing
t vortices as found by Linsker [26], the lateral interac-
tion causes phase shifts of the receptive field profiles,
which then orient into the parallel configuration.

IV. DISCUSSION

The main purpose of this paper is to investigate the
training behavior of a simple neural network, the archi-
tecture of which is derived from experimental data for
the anatomical structure of the prenatal early visual path-
way in mammals. One of the most prominent features of
this anatomically motivated network is a retinotopic pro-
jection of the input neurons to the output layer. Retino-
topic axonal terminals lead to spacially restricted recep-
tive fields of the output neurons, which show roughly cir-
cular symmetry and are shifted against each other in the
same way as the output neurons they belong to. This ap-
proach is based on the chemoaffinity hypothesis [33],
which suggests the development of retinotopy by mecha-
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nisms of directed axonal growth rather than by synaptic
plasticity. The network is trained using a general Hebb-
type learning rule as introduced earlier [27], which at
least for weak lateral interactions approximately extracts
the principal component from the ensemble of input pat-
terns. Since prenatal development is considered, these in-
put patterns are spatially uncorrelated at the level of the
photoreceptor layer and model spontaneous photorecep-
tor activity.

The present network represents an inductive model in
that it first determines the architecture and the learning
principle of the network according to biological data and
then characterizes the structural features, in the present
context the orientation maps, that are found to arise in
the system during the training process. This approach is
in contrast to models which are explicitly designed to
show the structural features found in adult mammals
[18-20] or to reproduce them by conveniently chosen de-
velopmental processes [21-25].

Von der Malsburg and Cowan [22] use an anatomically
motivated network with predefined wave patterns of cor-
tical activity and genetically predetermined subsets of
orientation selective neurons. A training algorithm is
used, which leads to iso-orientation domains with struc-
tures similar to the cortical activity patterns. These pat-
terns, however, are introduced externally, so that this
model cannot predict the structure of orientation maps
from inherent developmental principles.

The latter is achieved by Swindale [23,24], who
represents orientation selectivity as a two-dimensional
vector. The components of this vector develop under in-
teractions that tend to adjust the preferred orientation of
each considered neuron along the average orientation of
the surrounding vectors. Thus he implements an itera-
tive smoothing procedure of the orientation preference
map that is similar to the approach given by Baxter and
Dow [17]. As mentioned by the author himself, this
model makes no effort to relate these mechanisms to bio-
logically plausible self-organization processes of cortical
receptive fields.

Obermayer, Blasdel, and Schulten [25] present a
Kohonen network, where the five-dimensional input vec-
tor encodes retinotopic position, orientation preference,
orientation selectivity, and ocular dominance. These
features are projected onto a two-dimensional output lay-
er via a Kohonen algorithm applied to the weight vectors
belonging to each output neuron. The authors give a so-
phisticated analysis of the structures formed by the mod-
el and show that orientation preference, orientation selec-
tivity, and ocular dominance maps form in a coordinated
manner if the average orientation selectivity or the aver-
age ocular dominance within the ensemble of input pat-
terns (the order parameters of the model) exceed a thresh-
old value. In this case, their results can be closely related
to columnar structures found in biology. Since before
birth neither strong orientation selectivity nor ocular
dominance of the random stimuli is given, only fluctua-
tions of the maps around a flat equilibrium distribution
with binocular nonorientation selective cells are predict-
ed by the authors for the prenatal stage of development.
Thus the model is not suited to model prenatal formation
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of orientation selectivity as well as its ordered arrange-
ment (as observed for the monkey by Wiesel and Hubel
[6]), which is the focus in the present work. Further, the
Kohonen algorithm adjusts formal synaptic weights,
which represent properties of cortical profiles and are not
directly related with the development of biological synap-
tic coupling strengths.

One common feature which is characteristic to the
latter two models is the explicit introduction of a 180°
symmetry to the receptive field properties of their model
neurons. This is done by doubling the polar angle of the
preferred orientation, which was introduced by Swindale
[23] and repeated in more recent approaches [24,25]. In
these models, the developmental process describes the
time dependence of each orientation preference as a func-
tion of all other preferences. Because these quantities
remain identical for changes about +180°, the developing
orientation preference maps also show this symmetry. In
particular, 7 vortices are commonly found in the orien-
tation preference maps reported by these authors. These
models, though correctly reproducing orientation prefer-
ence maps found in mammal area 17, neglect the fact that
in biology the development of orientation preference and
selectivity occurs via the coordinated self-organization of
receptive field profiles. These profiles, however, do not
generally show 180° symmetry, though their orientation
preference does. Therefore, it seems difficult to relate
these models to a developmental process based on plas-
ticity of cortical receptive field profiles as it is probably
implemented in biological systems. This is confirmed by
the simulation results observed in the present network,
which focus on the development of cortical receptive field
profiles and the concomitant formation of orientation
preference and orientation selectivity maps. The most
stable orientation preference maps consist of =1 vortices,
which reflect the 360° symmetry of the most stable bi-
lobed cortical receptive fields.

A linear feed-forward neural network with an anatomi-
cally motivated architecture, where the input neurons do
not represent formal features but model biological neu-
rons of the visual pathway, was given by Linsker [26] (see
also [34]). The author showed that Hebb training of ini-
tially random synaptic weights with uncorrelated white
noise can lead to orientation maps with +J vortices as
elementary structures (note that Linsker’s model does not
perform principal component analysis). This result is
achieved using a simplified description of the learning dy-
namics, where the structure of the receptive fields is fixed
to three-lobed profiles (which also show 180° symmetry),
the orientation preference angles of which change ac-
cording to the influence of neighboring neurons, thus
forming orientation preference maps. This model, in
contrast to the network of the present paper, assumes the
appropriate symmetry of the individual receptive fields,
which translates into the emerging orientation map. Fur-
ther, since all profiles are identical, Linsker’s model does
not allow variations of orientation selectivity (which re-
quires deformation of the profiles) and therefore cannot
model the development of orientation selectivity maps.
Finally, the approach is restricted to weak lateral interac-
tions, which is in contrast to biological evidence (in mon-
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keys, each neuron receives about 2300 synapses [28],
where at most 300 belong to afferent fibers [27]) and to
purely excitatory intracortical connections.

The present model takes into account the structural de-
velopment of cortical receptive fields, the profiles of
which develop during the maturation process. Since this
procedure is computationally expensive, the receptive
fields were expanded with respect to the eigenstates of the
correlation function of the neural activities within the in-
put layer, and the training algorithm was transformed to
a set of equations determining the time evolution of the
expansion coefficients. In this representation, it turns out
that only a few expansion coefficients can take large
values in a mature system, since the symmetry of the
remaining eigenstates differs strongly from the environ-
mental symmetry determined by the lateral interaction
and the partial cortical correlation function. Thus even
for strong lateral interactions, only the few highest eigen-
states need to be taken into account for the training pro-
cess, which strongly reduces simulation times. Therefore,
the present model neural network provides an efficient
way to simulate the coordinated development of cortical
receptive fields, which in turn determines the structure of
orientation preference as well as orientation selectivity
maps.

For the implemented Hebb-type learning rule, it was
found that the time averaged influence of intracortical
connections to the learning dynamics remains small com-
pared to the dominant contribution from the afferent
synaptic weights. This results from a weak correlation of
intracortical and afferent signals arriving at a given corti-
cal neuron in contrast to a strong correlation between
afferent signals to this neuron, provided the input pat-
terns do not vary too slowly. A weak interaction approx-
imation could therefore be applied to the learning algo-
rithm, which renders the observed quenching of all but
the highest eigenstates plausible even in the case of bio-
logically relevant strong lateral couplings.

Using this approximation, it was found that three-
lobed receptive fields and concomitant orientation maps
with 180° symmetry do not form in our model in the case
of weak lateral interactions. But the application of
strong interactions, where partly three-lobed receptive
fields evolve, leads to the development of all parallel
orientation maps instead of vortex structures. Thus
Linsker’s results (as well as those of other models that
presuppose 180° symmetry of their elements) cannot be
considered as inherent features of an anatomically
motivated network with freely developing cortical recep-
tive field profiles. Instead, structured orientation prefer-
ence maps were observed at the (0,1) domain, where the
stable bilobed receptive fields form. Due to the symmetry
of these profiles, the emerging orientation maps contain
*1 vortices. For the twofold degenerate (0,1) eigenstate,
the weak lateral interaction approximation can be
simplified to obtain an energy function, the minima of
which correspond to stable orientation preference maps.
While dropping variations of orientation selectivity, this
approach focuses on a semianalytical characterization of
the orientation preference maps that emerge for different
lateral interaction functions.
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Proceeding from these results, stronger lateral interac-
tions were applied. In this case, reduced orientation
selectivity was found to coincide with regions where the
continuity of the orientation map is distorted. The cou-
pling of both maps occurs via a change in environmental
symmetry for neurons located near discontinuities. This
leads to an increased admixture of nonprincipal com-
ponent states to deformed resulting receptive fields and
therefore to reduced orientation selectivity. Thus the
coordinated formation of orientation preference maps
with piecewise linear orientation drift interrupted by
discontinuities, and a reduction of orientation selectivity
at these discontinuities, is an inherent feature of our net-
work (see, in contrast, [20]).

In the following, some quantitative features of the
orientation maps emerging in the model are compared to
those observed in mammal area 17. As shown in Blasdel
and Salama [8] and Blasdel [9,10], orientation preference
in monkey area 17 is arranged in systems of +1 vortices
with average center distances of about 500-600 mm,
which agrees with previously measured orientation drift
rates [35] (see Sherk and Stryker [36] for kittens). The
discontinuities coincide with regions of reduced orienta-
tion selectivity. From axonal degeneration in monkey
area 17 after small intracortical lesions, lateral interac-
tions have been estimated by Fisken, Garey, and Powell
[37] to show roughly sombrero shape with radii corre-
sponding to R, =0.5 mm and R;=1 mm. However, the
total range of the intracortical connections varies strong-
ly between 0.2 mm in layer IV up to 4 mm in layer IIlc.
Other estimates using punctual injections of horseradish
peroxidase [38] also lead to a range of lateral connections
up to 1-2 mm. Finally, physiological investigations on
complex cells in cats’ visual cortex showed that intracor-
tical inhibition plays a considerable role for neural pro-
cessing [39].

If one identifies the output layer of the model network
with the cortical layer IV, where the lateral interaction
shows very short range (R./p=0.6, p=0.15 mm and
R./p=0.2, p=0.5 mm for parvo and magnocellular in-
put, respectively [27]), the model which uses sombrero-
type lateral interactions suggests the formation of tangen-
tial vortices with R, /p=0.8 for the magnocellular sys-
tem [see Fig. 7(b)]. The resulting vortex radius of
R,=0.3 mm agrees even quantitatively with the neuro-
biological findings.

Further, comparison of the present simulation results
to quantitative evaluations of orientation drift rates [17]
also suggests that regions with +1 vortices might exist in
area 17. The strongest reduction of orientation selectivi-
ty in the present model occurs in +1 centers of the vor-
tices (though also present at other discontinuities). The
concentration to + 1 centers is most evident for the radial
vortices obtained with purely excitatory lateral interac-
tions but can also be found for tangential vortices (see
Fig. 9). This result strongly supports the E1 model of
Baxter and Dow [17] (+1 vortices, where also the + 1 but
not the —1 centers correspond to patches of nonorienta-
tion selective cells), which in turn was found by these au-
thors to yield the closest match to orientation drift rates
obtained from tangential electrode penetrations in area
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17.

However, some restrictions of the present model must
be mentioned also. Its main disadvantage is its failure to
reproduce the experimentally observed *1 vorticity of
the orientation preference maps. This shows that the
180° symmetry presupposed by other authors is difficult
to implement in an anatomically motivated network ar-
chitecture. In analogy to Linsker’s model [26], the for-
mation of +1 vortices could easily be achieved by the
present neural network if the cortical receptive fields
were forced into profiles with even spatial symmetry (i.e.,
three-lobed profiles). Therefore, the fact that +1-vortex
structures do not evolve in the present model can be re-
duced to the observation that cortical profiles with even
spatial symmetry do not represent a stable solution in this
system. Since the present approach uses a general Hebb-
type learning rule and investigates several types of lateral
interaction functions, this lacking stability of profiles
with 180° symmetry was shown to appear in a whole class
of anatomically motivated neural networks. The
modification of this presently investigated network in a
way that stable orientation selective cortical receptive
fields with even spatial symmetry evolve (which in turn
leads to the formation of +1-vortex structures in an ana-
tomically motivated network architecture) is thus a chal-
lenge for future investigations.

Another restriction is that the quantitative agreement
of drift rates to biological data can only be achieved for
the magnocellular but not for the parvocellular system.
One possible explanation of this phenomenon might be an
earlier development of receptive field profiles for cortical
neurons which receive magnocellular input. These neu-
rons would first show correlated activities with respect to
each other and be responsible for the formation of the
orientation map. The development of the parvocellular
part of layer IV might then be dominated by the existing
magnocellular structure. A model that explicitly includes
both magnocellular and parvocellular afferents might
provide new insight into the coordinated development of
magnocellular vortex-shaped orientation maps and the
parvocellular nonorientation selective color system locat-
ed in the vortex centers.

Further, the parameter domain for the formation of
vortices is narrow, and the small energy difference be-
tween the tangential vortex structure and the totally
parallel structure seems to indicate a lacking robustness
of the results to perturbations such as randomized lateral
interaction functions. Finally, in the present work, orien-
tation selectivity was only defined via the structure of the
afferent connectivity, which is only justified for weak
lateral interaction. However, as shown by Worgotter and
Koch [40], the main influence of a strong lateral connec-
tivity is probably the sharpening of the orientation tuning
of cortical neurons, provided that orientation maps of the
afferents do already exist. Therefore, it seems justified to
consider the time development of afferent structures only.

V. SUMMARY

In this work, a neural network model for the self-
organization of simple orientation selective cortical re-
ceptive fields and their ordered arrangement into orienta-



50 NEURAL NETWORK MODEL FOR THE COORDINATED... 4181

tion preference and orientation selectivity maps was
presented. In contrast to earlier models, it was designed
to parallel the anatomy of the early visual pathway rather
than to reproduce the experimentally observed orienta-
tion maps. It thus represents an inductive, anatomically
motivated approach, where the formation of orientation
maps occurs via the self-organization of cortical receptive
field profiles under the influence of different intracortical
connections. For this model, orientation preference maps
consisting of vortex structures with singularities at their
centers and fractures at their borders were found to
emerge. Due to a coupling mechanism inherent to the
model, patches of reduced orientation selectivity evolve
simultaneously and coincide with the discontinuities of

the corresponding orientation preference map, which
parallels recent biological findings. However, since
three-lobed receptive fields with even spatial symmetry
(180° symmetry) do not represent stable solutions within
the considered class of networks, no +1 vortices as ob-
served in area 17 were found to form in our model, only
*+1 vortices with 360° symmetry. Thus the present results
offer a challenge for further investigations, which should
focus on designing a modified, anatomically motivated
network architecture yielding stable cortical receptive
fields with even spatial symmetry. It should lead to a
model for the formation of +-vortex structures and su-
perimposed orientation selectivity maps via the coordi-
nated development of cortical receptive field profiles.
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FIG. 1. Schematic plot of the neural network architecture
used in this work. Uncorrelated white noise patterns &(r,?) are
convolved with the sombrero-type input filters and lead to ac-
tivity distributions v(r, ) of the input layer. The activities of the
output neurons m are obtained by summation over these input
activities weighted by the synaptic fields w,(r—r,). The
synaptic fields of different output neurons are shifted against
each other to preserve strict retinotopic order. The output neu-
rons m and n are connected via time independent lateral con-
nections I,,,.
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FIG. 2. (a) Simplified profile of a bilobed orientation selective
(0,1) receptive field. “+" and “—” denote the sign of the
synaptic field w. It is obtained as a linear combination of the
two (0,1) basis states. (b) The orientation preference vector a of
the receptive field in (a). The vector is orthogonal to the pre-
ferred orientation of the cell.
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FIG. 3. Orientation of
minimal energy as a function of
the position for an output neu-
ron, which only interacts with a
central neuron with vertical
orientation preference vector (a)
for purely excitatory Gaussian
lateral interaction and (b) for
sombrero-type lateral interac-
tion. (c) shows some receptive
field profiles drawn for case (a).
It can be seen that the receptive
fields are oriented to obtain max-
imum overlap to the central re-
ceptive field.



:vaor:tgéx radial FIG. 7. The parameter domains, where the
vortex energy of isolated structures suggests the for-
mation of radial vortices, tangential vortices,
and parallel structures (a) for excitatory and
(b) for sombrero-type lateral interaction. The
0.6 | inserted curves mark the estimated optimal
vortex radius R, ., for the vortex domains.
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